ไซโตไคนิน

ตอบกลับโพส
อ.บอล
โพสต์: 882
ลงทะเบียนเมื่อ: จันทร์ 01 เม.ย. 2013 4:49 pm
ติดต่อ:

ไซโตไคนิน

โพสต์ โดย อ.บอล » เสาร์ 11 พ.ค. 2013 8:25 pm

ไซโตไคนิน (Cytokinins)
การค้นพบฮอร์โมนในกลุ่มนี้เริ่มจากการศึกษาการเพาะเลี้ยงเนื้อเยื่อ โดยในปี ค.ศ. 1920 Haberlandt ได้แสดงให้เห็นว่ามีสารชนิดหนึ่งเกิดอยู่ในเนื้อเยื่อพืชและกระตุ้นให้เนื้อเยื่อพาเรนไคมาในหัวมันฝรั่งกลับกลายเป็นเนื้อเยื่อเจริญได้ ซึ่งแสดงว่าสารชนิดนี้สามารถกระตุ้นให้มีการแบ่งเซลล์ ต่อมามีการพบว่าน้ำมะพร้าวและเนื้อเยื่อของหัวแครอทมีคุณสมบัติในการกระตุ้นการแบ่งเซลล์เช่นกัน
นักวิทยาศาสตร์หลายท่าน เช่น Skoog และ Steward ทำการทดลองในสหรัฐอเมริกา โดยศึกษาความต้องการสิ่งที่ใช้ในการเจริญเติบโตของกลุ่มก้อนของเซลล์ (Callus) ซึ่งเป็นเซลล์ที่แบ่งตัวอย่างรวดเร็ว แต่ไม่มีการเปลี่ยนแปลงทางคุณภาพเกิดขึ้นของ pith จากยาสูบและรากของแครอท จากผลการทดลองนี้ทำให้รู้จักไซโตไคนินในระยะปี ค.ศ. 1950 ซึ่งเป็นฮอร์โมนพืชที่จำเป็นต่อการแบ่งเซลล์และการเปลี่ยนแปลงทางคุณภาพของเนื้อเยื่อ ในปัจจุบันพบว่าไซโตไคนิน ยังเกี่ยวข้องกับการเสื่อมสภาพ (Senescence) และการควบคุมการเจริญของตาข้างโดยตายอด (Apical Dominance)
จากการศึกษาของ Skoog โดยเลี้ยงเนื้อเยื่อ pith ของยาสูบ พบว่าการที่เนื้อเยื่อจะเจริญต่อไปได้นั้นจะต้องมีอาหารและฮอร์โมน เช่น ออกซิน โดยถ้าให้ออกซินในอาหารจะมีการเจริญของเนื้อเยื่อนั้นน้อยมาก เซลล์ขนาดใหญ่เกิดขึ้นโดยไม่แบ่งเซลล์ นอกจากนั้นจะไม่เกิดการเปลี่ยนแปลงทางคุณภาพ อย่างไรก็ตามหากเพิ่มพิวรีน เบส (Purine Base) ชนิดอะดีนีน (Adenine) ลงไปในอาหารรวมกับ IAA พบว่า เนื้อเยื่อจะกลายเป็นกลุ่มเซลล์ (Callus) ถ้าใส่อะดีนีนอย่างเดียวรวมกับอาหาร เนื้อเยื่อจะไม่สร้างกลุ่มเซลล์ขึ้นมา ดังนั้นจึงมีปฏิสัมพันธ์ (Interaction) ระหว่าง อะดีนีน และ IAA ซึ่งกระตุ้นให้เกิดการแบ่งเซลล์ขึ้น อะดีนีนเป็นพิวรีนเบส ซึ่งมีสูตรเป็น 6-อะมิโนพิวรีน (6-aminopurine) และปรากฏอยู่ในสภาพธรรมชาติโดยเป็นส่วนประกอบของกรด นิวคลีอิค
ในปี 1955 Miller ได้แยกสารอีกชนิดหนึ่งซึ่งมีคุณสมบัติคล้ายคลึงแต่มีประสิทธิภาพดีกว่าอะดีนีน ซึ่งได้จากการสลายตัวของ DNA ของสเปิร์มจากปลาแฮร์ริง สารชนิดนี้ คือ 6-(furfuryl-amino) purine ซึ่งมีสูตรโครงสร้างคล้ายอะดีนีน เนื่องจากสารชนิดนี้สามารถกระตุ้นให้เกิดการแบ่งเซลล์โดยร่วมกับออกซิน จึงได้รับชื่อว่าไคเนติน (Kinetin)
ไคเนติน เป็นสารที่ไม่พบตามธรรมชาติในต้นพืช แต่เป็นสารสังเคราะห์ ต่อมาได้มีการค้นพบไซโตไคนินสังเคราะห์อีกหลายชนิด สารสังเคราะห์ที่มีกิจกรรมของไซโตไคนินสูงที่สุดคือ เบนซิลอะดีนีน (Benzyladenine หรือ BA) และเตตระไฮโดรไพรานีลเบนซิลอะดีนีน (tetrahydropyranylbenzyladenine หรือ PBA)

ไซโตไคนินที่พบในพืช
แม้ว่าไคเนติน BA และ PBA เป็นสารที่ไม่พบในต้นพืช แต่สารซึ่งพบในอวัยวะของพืชหลายชนิด เช่น ในน้ำมะพร้าว ในผลอ่อนของข้าวโพด ให้ผลทางสรีรวิทยาและสัณฐานวิทยาที่คล้ายคลึงกับสาร BA และ PBA สารที่เกิดตามธรรมชาติและสารสังเคราะห์หลายชนิด ซึ่งมี คุณสมบัติเหมือนไคเนตินนั้น เรียกโดยทั่วๆ ไปว่า ไซโตไคนิน ซึ่งเป็นสารที่เมื่อมีผลร่วมกับออกซินแล้วจะเร่งให้เกิดการแบ่งเซลล์ในพืช
มีหลักฐานเด่นชัดชี้ว่าไซโตไคนินที่เกิดในธรรมชาติเป็นสารประกอบพิวรีน ในปี 1964 Letham ได้แยกไซโตไคนินชนิดหนึ่งจากเมล็ดข้าวโพดหวาน และพบว่า เป็นสาร 6-(4-hydroxy-3-methyl but-2-enyl) aminopurine ซึ่ง Letham ได้ตั้งชื่อว่า ซีเอติน (Zeatin)
นับตั้งแต่มีการแยกไซโตไคนินชนิดแรกคือซีเอตินแล้ว ก็มีการค้นพบไซโตไคนิน อีกหลายชนิดซึ่งทุกชนิดเป็นอนุพันธ์ของอะดีนีน คือ เป็น 6-substituted amino purines ซีเอตินเป็นไซโตไคนินธรรมชาติซึ่งมีประสิทธิภาพสูงที่สุด

การสังเคราะห์ไซโตไคนิน
การสังเคราะห์ไซโตไคนินในต้นพืชเกิดโดยการ substitution ของ side chain บนคาร์บอนอะตอมที่ 6 ของอะดีนีน ซึ่ง side chain ของไซโตไคนินในสภาพธรรมชาติ ประกอบด้วยคาร์บอน 5 อะตอม จึงเป็นการชี้ให้เห็นว่าเกิดมาจากวิถีการสังเคราะห์ ไอโซพรีนอยด์ (Isoprenoid) ต่อมาพบว่า กลุ่มของไซโตไคนิน เกิดขึ้นบน t-RNA ได้ และเมื่อใช้เมวาโลเนต (Mavalonate หรือ MVA) ที่มีสารกัมมันตรังสี จะสามารถไปรวมกับกลุ่ม อะดีนีนของ t-RNA เกิดเป็นไดเมทธิลอัลลิล (Dimethylallyl side chain) เกาะด้านข้าง ในเชื้อรา Rhizopus นั้น Dimethylallyl adenine สามารถเปลี่ยนไปเป็น Zeatin ได้ จึงคาดกันว่า Zeatin อาจจะเกิดจากการออกซิไดซ์ Dimethylallyl adenine
การเกิดกลุ่มของไซโตไคนินใน t-RNA นี้ หมายความว่า ไซโตไคนิน อาจจะเกิดขึ้นมาจากการสลายตัวของ t-RNA ซึ่งความเป็นจริงก็พบเหตุการณ์ดังกล่าวบ้าง อย่างไรก็ตามยังมีข้อสงสัยอีกมากที่เกี่ยวข้องกับการเกิดไซโตไคนินจาก t-RNA อาจจะมีวิถีเฉพาะที่ก่อให้เกิดการสังเคราะห์ไซโตไคนิน ดังแสดงในรูปที่ 12.4 ซึ่งเป็นวิถีที่แยกอย่างเด็ดขาดจากการเกิดไซโตไคนินโดยการสลายตัวของ t-RNA
พบไซโตไคนินมากในผลอ่อนและเมล็ด ในใบอ่อนและปลายรากซึ่งไซโตไคนิน อาจจะสังเคราะห์ที่บริเวณดังกล่าวหรืออาจจะเคลื่อนย้ายมาจากส่วนอื่น ๆ ในรากนั้นมีหลักฐานที่ชี้ให้เห็นว่าไซโตไคนินสังเคราะห์ที่บริเวณนี้ได้เพราะเมื่อมีการตัดรากหรือลำต้น พบว่าของเหลวที่ไหลออกมาจากท่อน้ำจะปรากฏไซโตไคนินจากส่วนล่างขึ้นมา ติดต่อกันถึง 4 วัน ซึ่งอาจจะเป็นไปได้ว่าไซโตไคนินสังเคราะห์ที่รากแล้วส่งไปยังส่วนอื่น ๆ โดยทางท่อน้ำ หลักฐานที่แสดงว่าสังเคราะห์ที่ส่วนอื่นยังไม่พบและการเคลื่อนย้ายของไซโตไคนินจากส่วนอ่อน เช่น ใบ เมล็ด ผล ยังเกิดไม่ดีและไม่มาก


การสลายตัวของไซโตไคนิน
ไซโตไคนินสามารถถูกทำลายโดยการออกซิเดชั่น ทำให้ side chain หลุดจากกลุ่มอะดีนีน ติดตามด้วยการทำงานของเอนไซม์ แซนทีนออกซิเดส (Xanthine Oxidase) ซึ่งสามารถออกซิไดซ์ พิวรีนเกิดเป็นกรดยูริค (Uric Acid) และกลายเป็นยูเรียไปในที่สุด อย่างไรก็ตามในใบพืชไซโตไคนินอาจจะถูกเปลี่ยนไปเป็นกลูโคไซด์ โดยน้ำตาลกลูโคสจะไปเกาะกับตำแหน่งที่ 7 ของอะดีนีนเกิดเป็น 7-กลูโคซีลไซโตไคนิน (7-glucosylcyto- kinins) หน้าที่ของไซโตไคนิน กลูโคไซด์ ยังไม่ทราบแน่ชัดนัก อาจจะเป็น "detoxification" ซึ่งไม่เกี่ยวข้องกับกิจกรรมทางเมตาบอลิสม์หรืออาจจะเป็นรูปที่ไซโตไคนินอาจจะถูกปลดปล่อยออกมาในบางสภาวะได้ จากการศึกษาโดยใช้ Radioactive BA พบว่าสามารถสลายตัวกลายเป็นกรดยูริคแล้วอาจจะรวมกับ RNA ได้

การเคลื่อนที่ของไซโตไคนิน
ยังไม่มีหลักฐานว่าเคลื่อนที่อย่างไรแน่ จากการทดลองพบว่าระบบรากเป็นส่วนสำคัญในการส่งไซโตไคนินไปยังใบ และป้องกันการเสื่อมสลายของใบก่อนระยะอันสมควร เป็นหลักฐานที่สำคัญที่ชี้ให้เห็นว่า ไซโตไคนินมีการเคลื่อนที่ขึ้นสู่ยอด ยิ่งไปกว่านั้นยังพบไซโตไคนินในท่อน้ำ ซึ่งมาจากระบบรากด้วย ในทางตรงกันข้ามไซโตไคนินซึ่งพบที่ผลซึ่งกำลังเจริญเติบโตไม่เคลื่อนที่ไปส่วนอื่นเลย ในทำนองเดียวกันจากการศึกษากับการให้ไซโตไคนินจากภายนอก เช่นให้ไคเนติน พบว่าจะไม่เคลื่อนย้ายเป็นเวลานาน แม้ว่าสารอื่น ๆ จะเคลื่อนย้ายออกจากจุดนี้ก็ตาม มีหลักฐานจำนวนมากชี้ให้เห็นว่าไซโตไคนินอาจจะเคลื่อนย้ายในรูปที่รวมกับสารอื่น ๆ เช่น น้ำตาล (Ribosides หรือ glucosides) ซึ่งไซโตไคนินในรูปที่รวมกับน้ำตาลนั้นพบเสมอในท่อน้ำท่ออาหาร
ในการให้ไฃโตไคนินกับตาข้างเพื่อกำจัด Apical dominance นั้น พบว่าไซโตไคนินจะไม่เคลื่อนที่เลยเป็นระยะเวลานานมาก ในการทดลองกับ BA พบว่า BA สามารถเคลื่อนที่ผ่านก้านใบและมีลักษณะแบบ Polar เหมือนกับออกซิน ในทุกการศึกษาพบว่า ไซโตไคนินในใบจะไม่เคลื่อนที่รวมทั้งในผลอ่อนด้วย ส่วนผลของรากในการควบคุมการเจริญเติบโตของส่วนเหนือดินอาจจะอธิบายได้ถึงไซโตไคนินที่เคลื่อนที่ในท่อน้ำ ซึ่งพบเสมอในการทดลองว่าไซโตไคนินสามารถเคลื่อนที่จากส่วนรากไปสู่ยอด แต่การเคลื่อนที่แบบ Polar ยังไม่เป็นที่ยืนยันการเคลื่อนที่ของไซโตไคนินในพืชยังมีความขัดแย้งกันอยู่บ้าง

การหาปริมาณของไซโตไคนิน
1. ใช้ Tobacco callus test โดยให้ไซโตไคนินกระตุ้นการเจริญของ tobacco pith cell โดยการชั่งน้ำหนักเนื้อเยื่อพืชที่เพิ่มขึ้น แต่เป็นวิธีที่ใช้เวลานาน
2. Leaf senescence test ไซโตไคนินทำให้คลอโรฟิลล์ไม่สลายตัวในแผ่นใบที่ลอยอยู่ในสารละลายไซโตไคนินในที่มืด แล้วหาจำนวนของคลอโรฟิลล์ที่เหลืออยู่ หลังจากลอยไว้ 3-4 วัน วิธีนี้ให้ผลไม่ดีเท่าวิธีแรก
กลไกการทำงานของไซโตไคนิน
ไซโตไคนินมีบทบาทสำคัญคือควบคุมการแบ่งเซลล์ และไซโตไคนินที่เกิดในสภาพธรรมชาตินั้นเป็นอนุพันธ์ของอะดีนีนทั้งสิ้น ดังนั้นงานวิจัยเกี่ยวกับกลไกการทำงานจึงมีแนวโน้มในความสัมพันธ์กับกรดนิวคลีอิค กลไกการทำงานของไซโตไคนินยังไม่เด่นชัดเหมือนกับออกซิน และจิบเบอเรลลิน แต่ไซโตไคนินมีผลให้เกิดการสังเคราะห์ RNA และโปรตีนมากขึ้นในเซลล์พืช ผลการทดลองบางรายงานกล่าวว่า หลังจากให้ไซโตไคนินกับเซลล์พืชแล้วจะเพิ่มปริมาณของ m-RNA, t-RNA และ r-RNA
การศึกษากลไกการทำงานของไซโตไคนิน ในช่วงทศวรรษ 1960 ได้เน้นไปในแง่ที่ว่าไซโตไคนินอาจจะส่งผลของฮอร์โมนผ่าน t-RNA บางชนิด เนื่องจากมีการค้นพบว่ามีกลุ่มไซโตไคนินปรากฏอยู่ร่วมกับ t-RNA หลายชนิด ทั้ง t-RNA ของซีรีน (Serine) และไธโรซีน (Thyrosine) มี อะดีนีนเบสซึ่งมี side chain และมีคุณสมบัติเป็นไซโตไคนินซึ่งมีประสิทธิภาพสูง ยิ่งไปกว่านั้นในกรณี อะดีนีนซึ่งมีคุณสมบัติของไซโตไคนินจะอยู่ถัดจากแอนติโคดอน (Anticodon) ของ t-RNA จึงเป็นที่เชื่อกันว่าการปรากฏของไซโตไคนินบน t-RNA อาจจะจำเป็นต่อการเกาะกันของโคดอน (Codon) และแอนติโคดอนระหว่าง m-RNA และ t-RNA บนไรโบโซม ซึ่งสมมุติฐานที่ว่าไซโตไคนินควบคุมกระบวนการ Translation ผ่านทาง t-RNA จึงได้รับความเชื่อกันมากในขณะนั้น
อย่างไรก็ตามสมมุติฐานนี้ ในเวลาต่อมาได้รับการวิจารณ์อย่างรุนแรง เช่นในการสังเคราะห์ t-RNA ตามปกตินั้น อาจจะเกิดการเปลี่ยนรูปของเบส หลังจากที่มีโพลีนิวคลีโอไทด์ (Polynucleotide) แล้ว ซึ่งหมายความว่า side chain บนตำแหน่งที่ 6 ของอะดีนีนนั้นเกิดขึ้นหลังจากที่อะดีนีนได้อยู่บน t-RNA เรียบร้อยแล้ว ซึ่งเป็นไปไม่ได้ที่ไคเนตินและซีเอตินหรือไซโตไคนินอื่นๆ จะเข้าร่วมกับ t-RNA ในรูปที่เป็นโมเลกุลที่สมบูรณ์ หลักฐานอีกข้อที่ไม่สนับสนุนสมมุติฐานนี้คือ การพบว่า t-RNA ของเมล็ดข้าวโพดซึ่งมีซีส-ซีเอติน (Cis-Zeatin) ในขณะที่ไซโตไคนินที่เกิดในธรรมชาติในเมล็ดเดียวกันเป็นทรานส์-ซีเอติน (trans-Zeatin) ดังนั้นจึงเป็นการยากที่จะเชื่อว่าไซโตไคนินเป็นสารเริ่มต้นของการสังเคราะห์ t-RNA แม้ว่างานทดลองจะยังสับสนและขัดแย้งกัน แต่โดยทั่วไปการรวมของไซโตไคนินเข้าไปใน t-RNA นั้นเกิดในอัตราที่ต่ำมากจนไม่น่าเชื่อสมมุติฐานดังกล่าว
งานวิจัยได้เปลี่ยนแนวและสนับสนุนว่าไซโตไคนินอาจจะทำงานโดยควบคุม กิจกรรมของเอนไซม์โดยตรงมากกว่าที่จะเกี่ยวกับการสังเคราะห์เอนไซม์ ไซโตไคนินมีอิทธิพลต่อเอนไซม์หลายชนิด เช่น ไคเนส (Kinases) ที่ใช้ในกระบวนการหายใจ นอกจากนั้นกิจกรรมของเอนไซม์ที่ใช้ในกระบวนการสังเคราะห์แสงก็เพิ่มขึ้น


ผลของไซโตไคนิน
1. กระตุ้นให้เกิดการแบ่งเซลล์และการเปลี่ยนแปลงทางคุณภาพใน tissue culture โดยต้องใช้ร่วมกับ Auxin ในการเลี้ยงเนื้อเยื่อพืชนั้นหากให้ฮอร์โมน ไซโตไคนินมากกว่าออกซิน จะทำให้เนื้อเยื่อนั้นเจริญเป็น ตา ใบ และลำต้น แต่ถ้าหากสัดส่วนของออกซินมากขึ้นกว่าไซโตไคนินจะทำให้เนื้อเยื่อนั้นสร้างรากขึ้นมา การ differentiate ของตาในการเพาะเลี้ยงเนื้อเยื่อจาก Callus จากส่วนของลำต้นนั้น auxin จะระงับ และไซโตไคนินนั้นจะกระตุ้นการเกิด และต้องมีความสมดุลระหว่างไซโตไคนินและออกซินชิ้นเนื้อเยื่อจึงจะสร้างตาได้
2. ชะลอกระบวนการเสื่อมสลาย เช่น กรณีของใบที่เจริญเต็มที่แล้วถูกตัดออกจากต้น คลอโรฟิลล์ RNA และโปรตีนจะเริ่มสลายตัวเร็วกว่าใบที่ติดอยู่กับต้น แม้จะมีการให้อาหารกับใบเหล่านี้ก็ตาม ถ้าหากเก็บใบเหล่านี้ไว้ในที่มืดการเสื่อมสลายยิ่งเกิดเร็วขึ้น อย่างไรก็ตามหากใบเหล่านี้เกิดรากขึ้นที่โคนใบหรือก้านใบ จะทำให้การเสื่อมสลายเกิดช้าลง เพราะไซโตไคนินผ่านขึ้นมาจากรากทางท่อน้ำ อย่างไรก็ตามการให้ไซโตไคนินกับใบพืชเหล่านี้จะชะลอการเสื่อมสลายได้เหมือนกับรากเช่นกัน นอกจากนั้นไซโตไคนินยังทำให้มีการเคลื่อนย้ายอาหารจากส่วนอื่นมายังส่วนที่ได้รับไซโตไคนินได้ เช่น กรณีของใบอ่อนซึ่งมีไซโตไคนินมากกว่าใบแก่จะสามารถดึงอาหารจากใบแก่ได้
ในกรณีเชื้อราที่ทำให้เกิดโรคราสนิม ซึ่งทำให้เกิดการตายของเนื้อเยื่อแล้วบริเวณเนื้อเยื่อที่ตายจะเกิดสีเขียวล้อมรอบขึ้นมาซึ่งบริเวณสีเขียวนี้มีแป้งสะสมมากแม้กระทั่งส่วนอื่นๆ ของใบตายไปแล้ว ส่วนสีเขียวอาจจะยังคงอยู่ ลักษณะนี้เรียกว่า Green Island ซึ่งบริเวณนี้จะมี ไซโตไคนินสูง คาดว่าเชื้อราสร้างขึ้นมาเพื่อดึงอาหารมาจากส่วนอื่น
3. ทำให้ตาข้างแตกออกมาหรือกำจัดลักษณะ Apical Dominanceได้ การเพิ่ม ไซโตไคนินให้กับตาข้างจะทำให้แตกออกมาเป็นใบได้ ทั้งนี้เพราะตาข้างจะดึงอาหารมาจากส่วนอื่นทำให้ตาข้างเจริญได้ เชื้อจุลินทรีย์บางชนิดสามารถสร้างไซโตไคนินกระตุ้นให้พืชเกิดการแตกตาจำนวนมากมีลักษณะผิดปกติ เช่น โรค Fascination นอกจากนั้นยังเร่งการแตกหน่อของพืช เช่น บอน และโกสน
4. ทำให้ใบเลี้ยงคลี่ขยายตัว กรณีเมล็ดของพืชใบเลี้ยงคู่งอกในความมืด ใบเลี้ยงจะเหลืองและเล็ก เมื่อได้รับแสงจึงจะขยายตัวขึ้นมา ซึ่งเป็นการควบคุมของไฟโตโครม แต่ถ้าหากให้ไซโตโคนินโดยการตัดใบเลี้ยงมาแช่ในไซโตไคนิน ใบเลี้ยงจะคลี่ขยายได้เช่นกัน ลักษณะดังกล่าวพบกับ แรดิช ผักสลัด และแตงกวา ออกซินและจิบเบอเรลลินจะไม่ให้ผลดังกล่าว
5. ทำให้เกิดการสร้างคลอโรพลาสต์มากขึ้น ซึ่งเป็นการเปลี่ยนแปลงทางคุณภาพอย่างหนึ่ง เช่น เมื่อ Callus ได้รับแสงและไซโตไคนิน Callus จะกลายเป็นสีเขียว เพราะพลาสติคเปลี่ยนเป็นคลอโรพลาสต์ได้ โดยการเกิดกรานาจะถูกกระตุ้นโดยไซโตไคนิน
6. ทำให้พืชทั้งต้นเจริญเติบโต
7. กระตุ้นการงอกของเมล็ดพืชบางชนิด
รับผลิตสินค้า อาหารเสริมพืช สั่งผลิตตราตัวเองขั้นต่ำ 1 ลัง ออกแบบแบรนด์ ออกแบบฉลาก ส่งวิเคราะห์ขึ้นทะเบียน ถูกต้อง ขายสบายใจทำตลาดของตัวเอง รับประกันสินค้า มีหลากหลายเกรดให้เลือก สอบถามโทร 0897522999 0815502458 ครับ
http://www.pnpandbest.com

ตอบกลับโพส

ย้อนกลับไปยัง “รวมเนื้อหา สาระน่ารู้ เกี่ยวกับฮอร์โมนพืช”

ผู้ใช้งานขณะนี้

สมาชิกกำลังดูบอร์ดนี้: ไม่มีสมาชิกใหม่ และบุคลทั่วไป 7